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Introduction

Flight delays are a pervasive and costly problem in the aviation industry, impacting not
only airlines but also passengers and the broader economy. (FAA) and Nextor had
estimated the annual costs of delays in 2019 to be US$33 billion, considering direct cost
to airlines and passengers, lost demand, and indirect costs.

Traditional models often fall short in capturing the intricate, nonlinear interactions
between various factors that contribute to delays, such as weather conditions, air traffic
congestion, and aircraft maintenance issues.

The motivation for this research is rooted in the urgent need for innovative solutions to
the persistent problem of flight delays. As global air traffic continues to rise, airlines are
under increasing pressure to enhance operational efficiency and maintain high levels of
service quality. The aim is to conduct a comparative analysis of Neural Networks (NN)
and Ant Colony Optimization (ACO) as predictive and optimisation tools for minimizing
flight delays.

NN: Ability to model complex, nonlinear relationships in data, are expected to provide
high accuracy in delay predictions by learning from historical flight data and real-time
inputs

ACO: Inspired by the foraging behavior of ants, offers a promising approach to optimizing
flight schedules by exploring and exploiting the best possible routes to minimise delays.
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Methodology

1. Understand the data and prepare the data to be used.

2. The design of NN model involves the selection of the right NN model structure, defining
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the essential features and designing the layers of the network. The
parameters are also determined to ensure the performance and accuracy are

acceptable.
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3. The design of basic ACO model and ensuring the parameters are correctly configured

during implementation.

4. The test scenario is required to create and find suitable dataset that accurately represent

real-world conditions.

5. Performance data from the comparisons between NN and ACO tests will be collected to

understand how the system is performing under different conditions.

6. Based on the analysis, NN and ACO model is refined. This involved iterative testing and

adjustment to enhance the system's performance.
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* Input Data: Use training data and historical delay data.
Database taken from US BTS. « Solution Construction: Each ant is a solution, explore
DFW international airport is identified as one of the airports different paths (schedules), guided by pheromone levels.
with the highest number of flight delay. * Prediction: Best schedule for flight departures by iteratively

Prediction will be focus on DFW airport.
minimise delays.

refining the solutions based on pheromone trails, aiming to
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- Generation 1: delay = 31.0158815779184 Best Schedule Departure Times Distribution
- Generation 2: delay = 30.50217991218565

- Generation 3: delay = 29.719998233634726
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- Generation 5: delay = 29.719998233634726

- Generation 6: delay = 29.719998233634726
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- Generation delay * Most optimal departure times to minimize delays are predominantly .
clustered around the early morning hours, particularly between 5 AM .

- Generation 49: delay = 12.153414144278859 and 7 AM.

- Generation delay = 12.153414144278859

Inputs

* Input Data: Use 11 features from Correlation Heatmap,

Hidden Layer 1

Hidden Layer 2

use training data and historical delay data

 Model
parameters

* Prediction: Best Schedule for Departure, minimising

delays

Design:

A deep

network and optimise

Results Conclusion

Effectiveness of both Neural Networks (NN) and Ant Colony

Optimization (ACO) in predicting and minimising flight

delays.

While NNs generally offer better accuracy and
computational efficiency, ACO provides a flexible and
adaptive approach that can be fine-tuned for complex

optimisation tasks.

Both methods show potential in enhancing operational
efficiency in the aviation sector, with NNs excelling in

handling large datasets and ACO offering robust solutions in

dynamic environments.

Integration of NN into ACO
Further Hyperparameters tuning
Applications on other domains

Future Works
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