

Temasek Defence Systems Institute

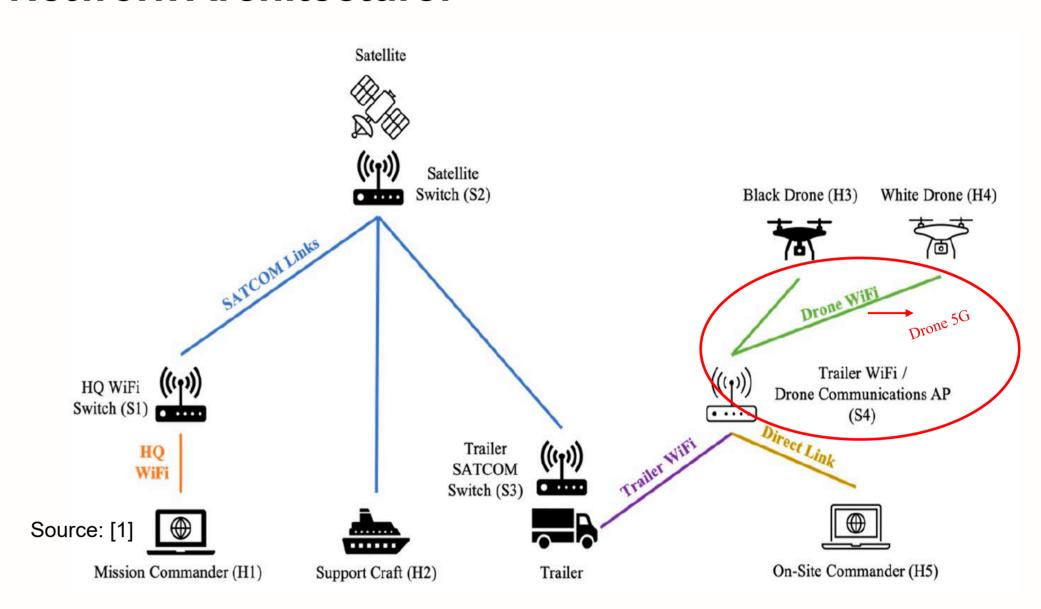
Integration of 5G Communications for UAV Control in a Multi-Link Network

Author: Lin Kaijian

Thesis advisor: Dr. Preetha Thulasiraman Co-advisors: Dr. James Calusdian

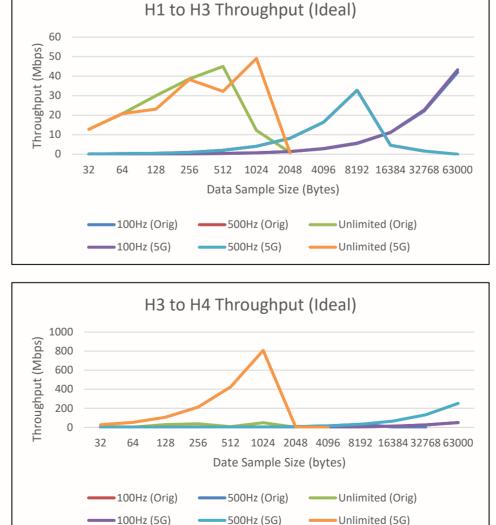
Background:

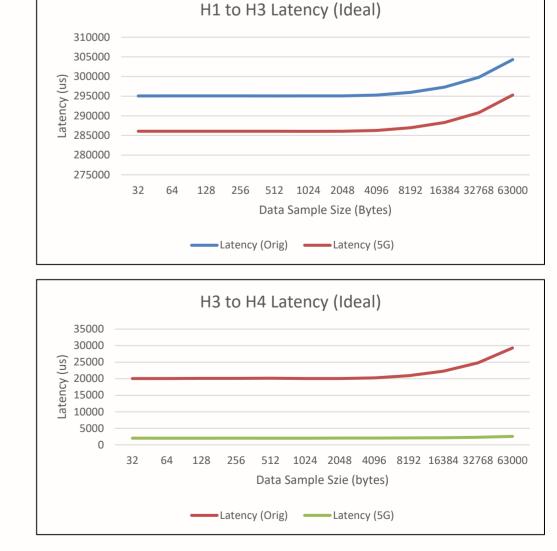
- The advantages of 5G are ultra-low latency, high bandwidth, and the ability to support a massive number of connected devices
- This offers significant potential for enhancing UAV operations which requires robust and reliable communication systems that can maintain seamless control and data transmission in complex, dynamic environments
- Adapted Network Architecture from previous student evaluating Data Distribution Service (DDS) performance of an unmanned system network


Objectives:

- Explore the feasibility of integrating a 5G network for UAV control and sending of data to ground control station using a multi-link network architecture that incorporates DDS
- Evaluate the throughput and latency performance of the individual point-to-point links across various nodes, under ideal and jitter network configurations as well as multi-flow configuration
- Compare and analyze the network performance of the 5G network architecture against the network architecture of the earlier network

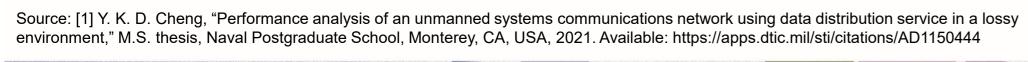
Results and findings:


- For Ideal configuration, 5G technology demonstrated significant improvements in throughput and latency, particularly for links such as H3 to H4 and H4 to H5. Less evident gains for H1 to H3 links, where bottlenecks from legacy networks like WiFi and SATCOM limited the 5G benefits
- In the Jitter Configuration, 5G exhibited resilience by maintaining superior throughput and latency, even under jitter conditions, outperforming WiFi at higher publication rates
- In the Multi-Flow Configuration, although the overall throughput remained stable due to low data demands, 5G significantly reduced latency, highlighting its effectiveness in minimizing delays even under modest network usage


Network Architecture:

Simulation Configurations and Scenario:

Configurations	Node (Pub)	Node (Sub)	Test Modes	Scenarios
Ideal	Н1	Н3	Throughput	PubRate at 100Hz, 500Hz and Unlimited
			Latency	
	НЗ	H4	Throughput	
			Latency	
	H4	Н5	Throughput	
			Latency	
Jitter	H1	Н3	Throughput	
			Latency	
	Н3	H4	Throughput	
			Latency	
	Н4	Н5 —	Throughput	
			Latency	
Multi-Flow	H1	H2 —	Throughput	VoIP
			Latency	
	H1	Н5	Throughput	
			Latency	
	H2	H1	Throughput	
			Latency	
	H2	Н5 —	Throughput	
			Latency	
	Н5	H1	Throughput	
			Latency	
			Throughput	Video Comms
	Н3	H1	Latency	
			Throughput	
	H4	H5	Latency	
			Throughput	
	H2	H1	Latency	
			Throughput	
	Н3	H1	Latency	Drone Telemetry
		Throughput	Drone relemetry	
	H4	H5	Latency	
			Throughput	
	H1	H3	Latency	ut Drone Control
			Throughput	
	H5	H4	Latency	



Future work:

- Vary sample sizes and PubRates in multi-flow configuration
- Increase scale of UAVs, work towards swarm UAVs operations
- Investigate cyber security measures and resilience of 5G networks

 Date: Nov 2024

