

Temasek Defence Systems Institute

Evaluating Hybrid Propulsion Systems for Naval Vessels

Author: Roy Lim Ying Chong

Thesis advisor: Prof. Ronald E. Giachetti, Second Reader: Mr. Kirk Waltz

1. Motivation

- Naval Operations are becoming increasingly complex and energyintensive.
- Rising fuel costs, emissions regulations, and operational demands drive interest in more efficient naval propulsion.
- Gas turbines provide strong highspeed performance but operate inefficiently at low to moderate speeds, where naval vessels spend most of their operating time.

2. Research Objective

Can a hybrid propulsion system that integrates gas turbines with batteries or fuel cells meet the Navy's performance standards while enhancing fuel efficiency and reducing carbon emissions?

3. Methodology

A physics-informed model was developed for the DDG-51 Arleigh Burke-class destroyer, simulating propulsion power, fuel flow, and endurance.

Steps:

- Model ship resistance (Holtrop-Mennen method)
- Simulate propulsion modes:
 - Baseline COGAG (gas turbines only)
 - Hybrid (gas turbines + PEM fuel cells + batteries)
- Operational scenario: Pearl Harbour to Yokosuka, Jap (3,300 nm) with speed profile ranging 5 – 30 knots.
- Assess outputs: endurance, fuel savings, hydrogen storage penalties, and cost.
- **Lifecycle analysis:** 25-year period with inflation-adjusted fuel savings.

Figure 1. COGAG Propulsion Architecture

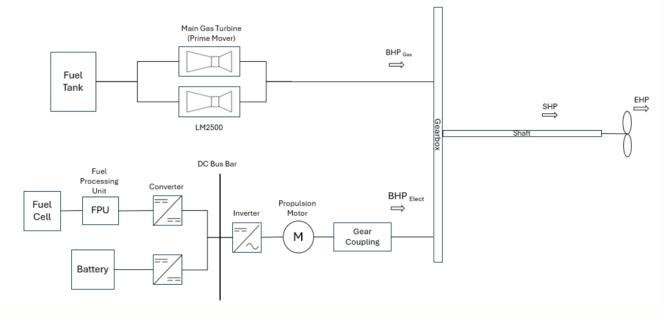


Figure 2. Hybrid Propulsion Architecture

4. Key Results

• Endurance vs. Speed: Endurance drops sharply as speed rises due to cubic power low.

Mission Scenario:

- Baseline COGAG consumed 346,668 gallons of F-76 fuel
- Hybrid system consumed 194,488 gallons of F-76 fuel + 167,762 kg of hydrogen
- Fuel saving of 152,180 gallons (approx. 44%)

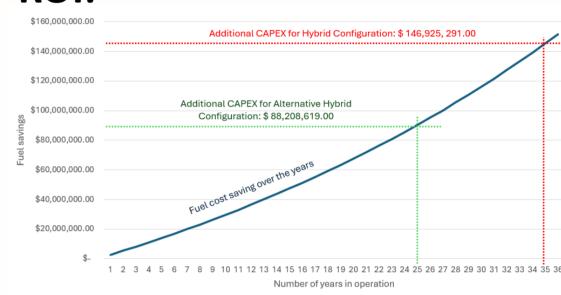
SWaP (Size, Weight and Power):

- Hybrid reduces liquid fue storage by 150,000 gallons.
- But requires approx. 6,990 m³ of hydrogen @ 350 bar; 6 times more space than diesel fuel.
- Added penalties: approx. 37 metric tons weight increase from batteries and fuel cells.

Parameter	13.5 days transit/ 3,300Nm		
	COGAG	Hybrid	Δ (Delta)
Power Output (kW)	344,559	344,559	-
Physical Size (m ³)	199	246	47
Physical Weight (kg)	79,648	116,950	37,302
Fuel Storage (Gal)	450,000	300,000	(150,000)
H2 Storage Volume (m³)	0	6,990	6,990
Total Storage Volume (m³)	1,703	8,125	6,422

5. Lifecycle Cost Analysis

CAPEX


- COGAG baseline: \$49.5M

- Hybrid: \$196.4M

OPEX Savings

- \$2.64M annual fuel savings
- Approx. \$90.3M over 25 years with2.5% fuel inflation

• ROI:

6. Discussion & Implications

Hybrid propulsion is most effective at low to medium speeds, where electric drives replace inefficient turbines.

Operational Benefits

- Extended endurance, fewer refueling stops
- Lower emissions and acoustic signature
- More flexible power allocation for combat systems

Challenges

- Hydrogen storage volume due to low volumetric energy density.
- Additional weight and complexity from fuel cells and batteries
- Refueling infrastructure for hydrogen at sea is not yet mature

7. Conclusion

Hybrid propulsion significantly reduces fuel consumption and lifecycle costs under certain conditions.

Future Research

- Alternative fuel cells to reduce hydrogen dependency
- Integration of Propulsion Derived Ship Service (PDSS) for shared propulsion/ service load.

