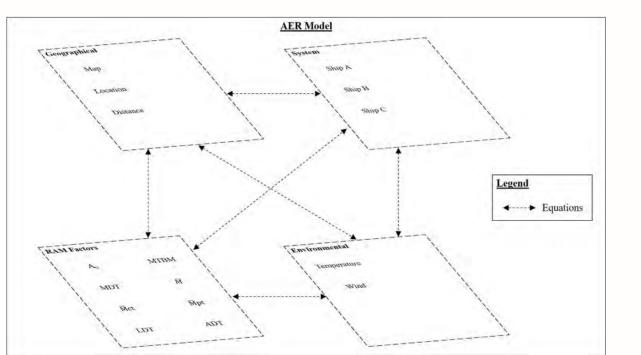
## Temasek Defence Systems Institute

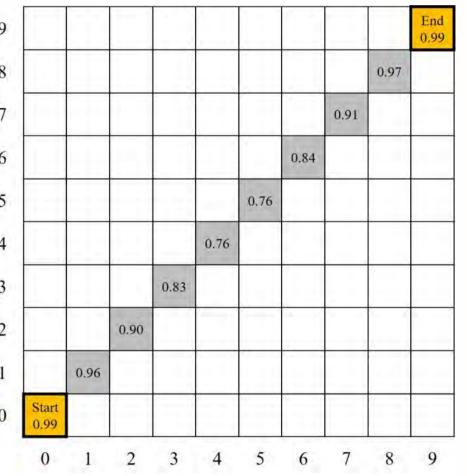
Temasek Defence Systems Institute

## An Arctic Environment Readiness (AER) Model for Quantifying The Impact of Extreme Arctic Weather on System Readiness


Author: ME5 Lim Wei Qin

Thesis advisors: Dr. Bryan M. O'Halloran & Dr. Douglas Van Bossuyt

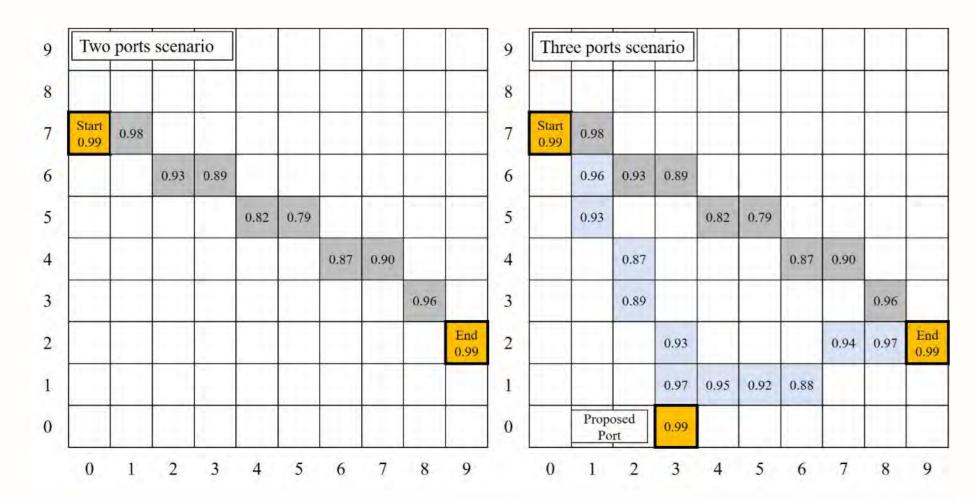
| Objective of thesis                                       | Case Study                                                          |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| This thesis proposes a model that quantifies and plot the | To illustrate how the AER model is used to predict                  |  |  |  |  |  |  |  |  |  |  |
| fleet readiness along the route to enhance decision       | readiness and determine the effectiveness of building an            |  |  |  |  |  |  |  |  |  |  |
| making. The model provides insights to (1) managing a     | additional port                                                     |  |  |  |  |  |  |  |  |  |  |
| fleet readiness, (2) examining the impact of              | <ul> <li>A 10 by 10 square matrix is used to represent a</li> </ul> |  |  |  |  |  |  |  |  |  |  |
| infrastructure development, and (3) investigating         | 100-cells mini map                                                  |  |  |  |  |  |  |  |  |  |  |
| requisite capabilities at the port.                       | <ul> <li>The starting port and destination port are</li> </ul>      |  |  |  |  |  |  |  |  |  |  |
|                                                           |                                                                     |  |  |  |  |  |  |  |  |  |  |

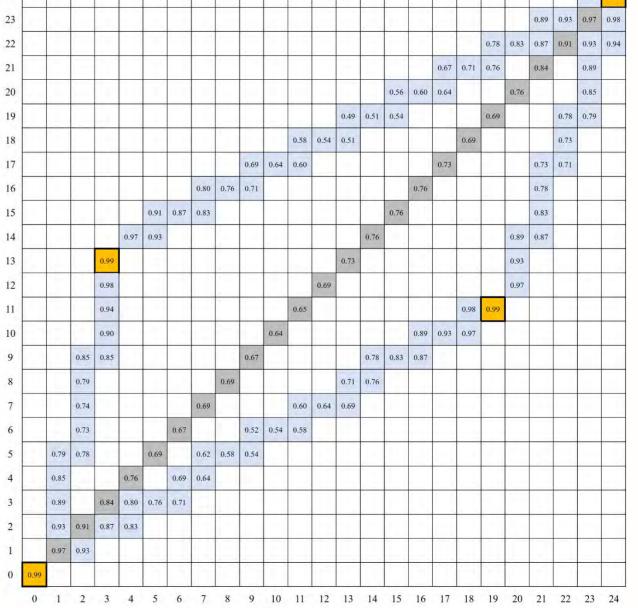

## Methodology

- 1. Development Of AER Model
  - Define Design Structure Matrices (DSMs)
  - Build sublayer matrices
  - Connect interaction between the different
    - matrices



- 2. Application of the AER model for different weather and operating conditions.
  - Collect data
  - Examine additional factor(s)
  - Perform DSM Result Analysis and Optimization
- 3. Assessment of AER model
  - Result is a DSM with the daily readiness shown 3. on the route taken by the fleet
  - Impact due to environmental factors and infrastructure development


- highlighted in orange, represented by cell coordinates (0, 0), and (9, 9) respectively
- The fleet was simulated to travel from the start point to the end point
- The fleet's readiness
   is plotted on the mini
   map
  - The initial result set 4 the datum for 3 comparison against 1 different weather and 0 operating conditions




## **Results & Conclusion**

- 1. AER model is flexible and scalable
- 2. By changing the variables and finetuning the requisite capabilities at the port, the accuracy of the model can be improved and an optimized solution for the problem can be achieved
  - . The true potential of the AER model can be achieved with a larger map

|    |   |  |  |  |  |  |  |  |      |  |  |      |      | _ |
|----|---|--|--|--|--|--|--|--|------|--|--|------|------|---|
|    | - |  |  |  |  |  |  |  | <br> |  |  |      |      |   |
| 24 |   |  |  |  |  |  |  |  |      |  |  | 0.00 | 0.00 |   |
| 24 |   |  |  |  |  |  |  |  |      |  |  | 0.98 | 0.99 | 1 |







