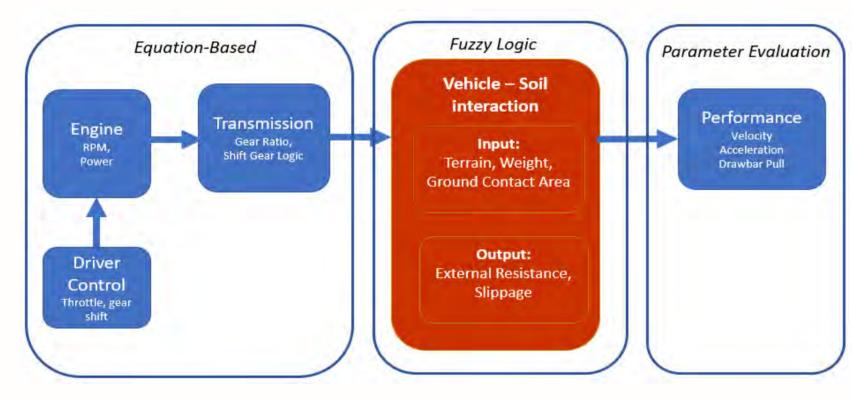


Temasek Defence Systems Institute

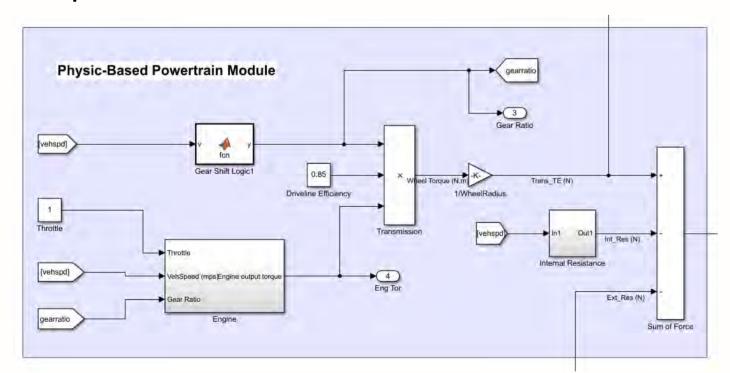
PREDICTION OF MOBILITY PERFORMANCE FOR MILITARY VEHICLE USING FUZZY LOGIC

Tan He Wen Mr Dave Simner

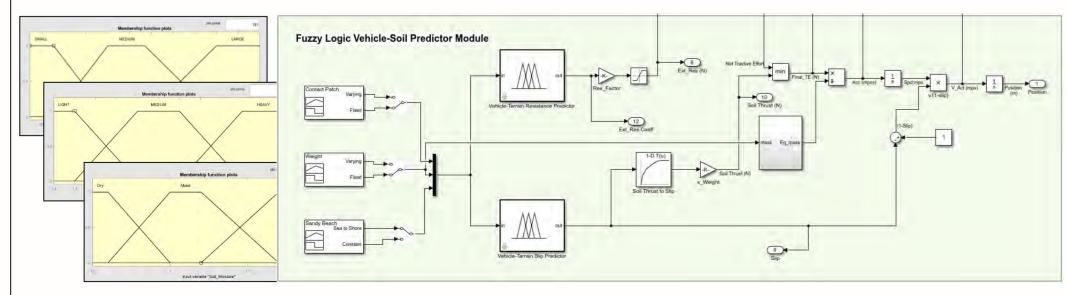
Introduction


- Conventional mobility assessment required complex analytical method.
- Difficult to replicate actual behaviour of system such as vehicle-soil interaction.
- Use of fuzzy logic can simplify modelling by the use of expert's experience.

Objective


• Demonstrate feasibility of hybrid modelling using analytical and fuzzy-logic for mobility prediction on sandy terrain.

Approach

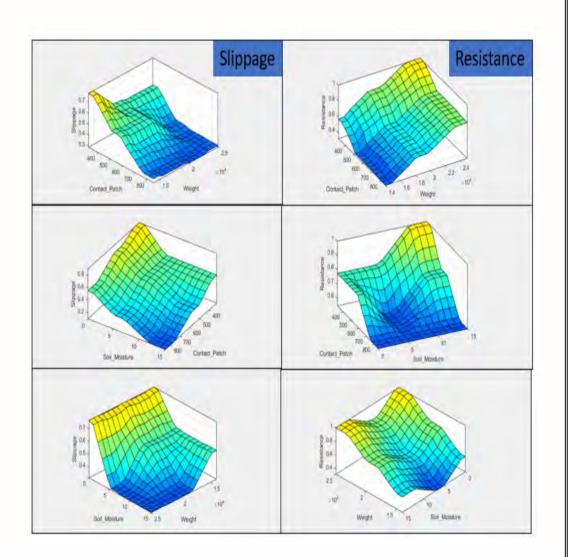

 MATLAB/SIMULINK is used to build this hybrid mobility model consisting of Equation-based Powertrain Model and Fuzzy Logic Vehicle-Soil Interaction Model

• Equation-based Powertrain Model premised on equation of motion with data from engine performance, driveline gear ratio, gear shift logic and wheel parameter.

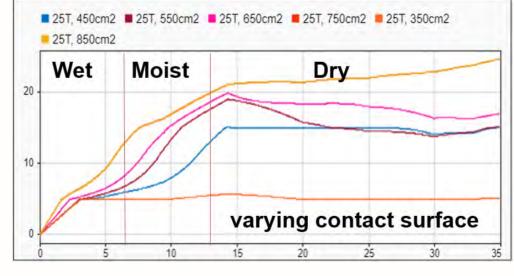
• Fuzzy Logic Vehicle-Soil Interaction Model consist of a inference system that relates Input to the output through expert experience.

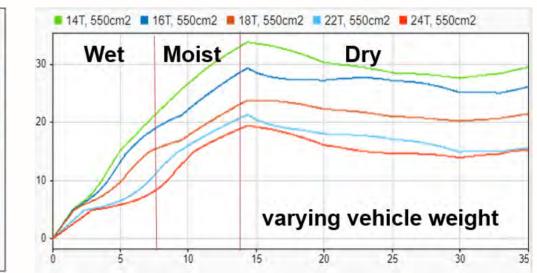
• Performance evaluation and analysis conducted based on various terrain and vehicle conditions.

Fuzzy Inference System


- Key attributes (vehicle weight, contact patch and terrain condition) used as input to produce output such as resistance of motion and wheel slippage that describle mobility performance.
- 27 Fuzzy IF-ELSE rules set in the Fuzzy Interference System based on expert's experience, knowledge and theory. General relationship between input and output are formed.

S/N	Terrain	Weight	Contact	Resistance	Slip
3/14	Terrain	vveignt	Patch	VL, L, M, H, VH	VL, L, M, H, VH
1	Dry	Unladen	Small	M	VH
2	Dry	Unladen	Medium	M	Н
3	Dry	Unladen	Large	L	M
4	Dry	Normal	Small	Н	VH
5	Dry	Normal	Medium	Н	Н
6	Dry	Normal	Large	M	M
7	Dry	Combat	Small	VH	Н
8	Dry	Combat	Medium	VH	Н
9	Dry	Combat	Large	Н	M
10	Moist	Unladen	Small	M	Н
11	Moist	Unladen	Medium	L	M
12	Moist	Unladen	Large	L	L
13	Moist	Normal	Small	Н	M
14	Moist	Normal	Medium	M	M
15	Moist	Normal	Large	М	L
16	Moist	Combat	Small	VH	M
17	Moist	Combat	Medium	Н	L
18	Moist	Combat	Large	Н	L
19	Wet	Unladen	Small	Н	Н
20	Wet	Unladen	Medium	M	M
21	Wet	Unladen	Large	L	L
22	Wet	Normal	Small	VH	M
23	Wet	Normal	Medium	Н	L
24	Wet	Normal	Large	M	VL
25	Wet	Combat	Small	VH	L
26	Wet	Combat	Medium	VH	L
27	Wet	Combat	Large	Н	VL


Table 4-1: Fuzzy Logic Rule Set for Resistance and Slippage Predictor


Fuzzy Logic Results

- Relationship of input and output of inference system is consistent with expert rules.
 - High slippage -> low weight and small contact area OR dry soil
 - High resistance -> heavy weight and soil is too dry or wet

Performance Analysis

- With varying contact surface -> 25T from wet to dry sand shows velocity improved with increased contact surface.
- With varying vehicle weight -> Increase weight caused deacceleration and lower max velocity.

Conclusion

- FL modelling is easy to use and adhere to theory and the expert's experience.
- Further improvement to the studies are (1) Use of experiment data for fuzzy interference system, (2) direct performance predictor, (3) expansion to tracked vehicle and various soil condition.

