
Contact: tdsbox2@nus.edu.sg

NOVEMBER 2019

Network Device Software Generation
Shi Ronghua and Se Xi Yang Ronald

Dr. Dennis M. Volpano
Objectives

Network Behaviours
Basic Network Behaviours

• To generate a software-defined network device, from
elementary behaviours Symbolic Finite Automata (SFA),
that can be guaranteed to exhibit only the required
network function behaviour, by virtue of verification by
construction.

• To run the generated software network device on a
server-grade machine and have comparable
performance to commercial grade switches.

• To introduce additional elementary behaviours SFA to
expand the building blocks inventory

f1 f2
→f1 - 𝜆𝜆𝜆𝜆. 𝑙𝑙𝑙𝑙𝑙𝑙 = {𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 𝑖𝑖}

f2 𝑠𝑠 = 𝜆𝜆.𝑠𝑠 ⇒ 𝑙𝑙𝑙𝑙𝑙𝑙 ⊆ 𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 − {𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 𝑠𝑠} -

Forwarding SFA F

e1
→e1 (𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 𝑠𝑠 ∈ 𝑙𝑙𝑙𝑙𝑙𝑙 ∧ 𝑢𝑢𝑙𝑙𝑢𝑢𝑠𝑠𝑢𝑢(𝑠𝑠.𝑑𝑑𝑢𝑢) ∧ 𝑠𝑠.𝑑𝑑𝑢𝑢 ∈ 𝑑𝑑𝑙𝑙𝑑𝑑(𝑑𝑑𝑙𝑙𝑢𝑢) ∧ 𝑢𝑢 −

𝑑𝑑𝑙𝑙𝑢𝑢(𝑠𝑠.𝑑𝑑𝑢𝑢). 𝑢𝑢 < 16) ⇒ 𝑑𝑑𝑙𝑙𝑢𝑢(𝑠𝑠.𝑑𝑑𝑢𝑢).𝑝𝑝𝑙𝑙𝑒𝑒𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠

Informed Unicast Forwarding SFA U

• New basic SFAs includes Routing (R), NAT learning (NL)

and NAT Translation (T).

Generation of Network Device

Recommendation for Future Works

• Complex network behaviours can be built by taking the
tensor product of the basic SFAs. • Puget server has comparable link speed performance as

compared to COTS devices (less than 100Mbps slower),

• The main advantage is that the data-plane software is
correct by construction.

• Code is guaranteed to satisfy the specification with no
undesirable behaviours.

Results

Tensor Product of SFA

f1e1m1 f2e1m1 f2e1m2 f2e1m3
→f1e1m1 - S S S
f2e1m2 S - - -
f2e1m2 S - - -
f2e1m3 S - - -

Basic Switching (FxUxML)

• Intel’s Data Plane Development Kit (DPDK) is used to
generate code from the tensor product SFAs.

• Code synthesis algorithm adopts a Most Common Literal
(MCL) technique to factor the literals with respect to its
frequency of occurrence in the transitions.

• Each literal is mapped to a corresponding code block.

• Overall code is compiled and deployed on a Puget server
with 4-gigabit ports.

0

200

400

600

800

1000

Wireshark Netcat

Sp
ee

d
(M

bp
s)

Speed Comparison between Puget server and
Netgear switch

Puget Server Netgear Gigabit Switch

• Code for switching, firewalling with parallel learning is
generated and compared with a COTS switch.

• Development of other elementary behaviour SFAs to aid
in building data-planes with more functions such as a
load balancer.

• Code synthesis algorithm can be automated to ease the
translation from SFAs representation to actual,
deployable code.

f1e1m1 

f2e1m2

𝜆𝜆𝜆𝜆. 𝑙𝑙𝑙𝑙𝑙𝑙 = {𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 𝑖𝑖} ∧ 𝑢𝑢𝑙𝑙𝑢𝑢𝑠𝑠𝑢𝑢(𝑠𝑠. 𝑠𝑠𝑢𝑢) ∧ 𝑠𝑠. 𝑠𝑠𝑢𝑢 ∈ 𝑑𝑑𝑙𝑙𝑑𝑑(𝑑𝑑𝑙𝑙𝑢𝑢)

f2e1m2 

f1e1m1

𝑠𝑠 = 𝜆𝜆. 𝑠𝑠 ⇒ 𝑙𝑙𝑙𝑙𝑙𝑙

⊆ 𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 − {𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 𝑠𝑠} ∧ (𝑢𝑢𝑙𝑙𝑢𝑢𝑠𝑠𝑢𝑢(𝑠𝑠.𝑑𝑑𝑢𝑢) ∧ 𝑠𝑠.𝑑𝑑𝑢𝑢

∈ 𝑑𝑑𝑙𝑙𝑑𝑑(𝑑𝑑𝑙𝑙𝑢𝑢) ∧ 𝑢𝑢 −𝑑𝑑𝑙𝑙𝑢𝑢(𝑠𝑠.𝑑𝑑𝑢𝑢). 𝑢𝑢 < 16 ∧ 𝑑𝑑𝑙𝑙𝑢𝑢(𝑠𝑠.𝑑𝑑𝑢𝑢). 𝑝𝑝𝑙𝑙𝑒𝑒𝑢𝑢

≠ 𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠) ⇒ 𝑙𝑙𝑙𝑙𝑙𝑙 ⊆ 𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 − {𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 𝑠𝑠} ∧ 𝑑𝑑𝑙𝑙𝑢𝑢

= 𝜆𝜆.𝑑𝑑𝑙𝑙𝑢𝑢 𝜆𝜆.𝑠𝑠. 𝑠𝑠𝑢𝑢 ↦ 𝑢𝑢 = 𝜆𝜆. 𝑢𝑢, 𝑝𝑝𝑙𝑙𝑒𝑒𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠

New Network Behaviours

• Other basic SFAs include MAC Address Learning (ML),
Socket Learning (SL) and Stateful Firewalling (SF).

	Slide Number 1

