Temasek Defence Systems Institute

Temasek Defence Systems Institute

FLIGHT POWER REQUIRED FOR AQUA-QUAD (SOLAR-POWERED QUAD-ROTOR UAS)

Author: Sean Yang, RSAF

Thesis Advisor: Kevin D. Jones | Co-Advisor: Vladimir N. Dobrokhodov

Background

Aqua-Quad The concept pairs small drone & solar power technologies in an innovative quadrotor system that can be launched from water or land for persistent & Intelligence, autonomous Surveillance, &

Reconnaissance operations. Without the need to refuel, the Aqua-Quad can easily be employed as a swarm.

Aqua-Quad Conceptual Design

Flight Testing

- Climb, descent, & cruise profiles conducted at outdoor test sites at Fort Ord & Camp Roberts.
- Flight testing mainly using scale model
- Validated power models & provided empirical inputs (Efficiency Factor, Pitch-Speed Relationship, Lift & Drag)

Cruise 0.807 kg with Array						
			1	H	Outbound	
				H-H-H	Inbound	

Aqua-Quad Quadrotor Prototype (1.1 x 1.1 m, ~3.5 kg)

The primary energy consumption stems from the thrust required to weight balance & drag during cruise flight. Analytically, this study used disk theory to actuator the derive power requirements based on the thrust & airspeeds during cruise & flight phases.

Profile of a Flight Test at Camp Roberts, California

Pitch Angles for Different True Air <u>Speeds – Input for Power Model to Fill</u> in Gaps in Analytical Models

Computational Fluid Dynamics

- Support and refine estimates for lift & drag of Solar Array

- Validated models of power for Aqua-Quad flight at different speeds

Results

