# Temasek Defence Systems Institute



Temasek Defence Systems Institute

# **Effects of Sensing Capability on Ground Platforms' Survivability During Ground Force** Maneuver Operations.

Tng Chung Siong

Associate Professor Eugene P. Paulo Associate Professor Douglas H. Nelson

#### **PROBLEM DEFINITION**

The conventional approach of increasing passive armor thickness on ground platforms may not be the way ahead as advancements in weaponry are going at a faster pace than armor protection development. Adding to the difficulty, most existing platforms are reaching their weight limits, making it technically not feasible and not cost effective to keep adding passive armor thickness. Therefore, there is a need to identify other approaches to improve ground platforms' survivability while developments in armor protection are still in progress.

#### **MODELING & SIMULATION**

The measures of effectiveness were:

- 1. Percentage of Blue Casualties
- 2. Probability of Mission Success
- 3. Time to Complete mission



#### SYSTEMS ENGINEERING APPROACH

The author modified Winston W. Royce's Waterfall Systems Engineering process model, developed in 1970, and tailored it to guide the study of this thesis. This model is iterative, and each phase of the model can provide feedback to any of its preceding phases.

#### **OPERATIONAL ANALYSIS**

Maneuver, as defined in the US Joint Capability Area Refinement Paper 2010, is the ability to move to a position of advantage in all environments in order to generate or enable the generation of effects in all domains and the information environment.

A hypothetical scenario is designed to maneuver three teams of Blue forces, each comprising a platoon of Abrams MBT, Bradley IFV, and Stryker ICV from base camp to a designated location 20km away. It is anticipated that there are adversaries (Red forces) in ambush along the movement route. Each team was dispatched at intervals of ten minutes, and the formation of each team was in the following order: MBT followed by IFV and lastly ICV. Fifteen minutes prior to moving out, two units of Raven UAVs were deployed for aerial surveillance, and the maneuver force was supported by 155mm artillery.



CONCEPTUAL DESIGN

Tailored Systems Engineering Waterfall Process Model



Hypothetical Ground Force Maneuver Operations



#### **FACTORS STUDIED**

- Sensor classification probability at maximum sensor classification range for:
  - Main Battle Tank (MBT)
  - Infantry fighting Vehicle (IFV)
  - Infantry Carrier Vehicle (ICV)
  - Unmanned Aerial Vehicle (UAV)
- UAV Speed •

MANA Scenario modeled

The Map Aware Non-Uniform Automata (MANA) Agent-based simulation software was used to create a hypothetical Ground Force Maneuver Operation Scenario for this exploration.

#### **DESIGN OF EXPERIMENTS**

The Nearly Orthogonal Latin Hypercube, which generated 33 nearly orthogonal design points, is used for the design of experiments methodology used.

| Hone                                                       | livet                                      | w NOL<br>Page Layout Fr                                | Hdesigns_Movemer<br>xmulas Data                         | nt (Compatibility N<br>Review View           | Mode] - Microsoft Exce<br>v Developer JN     | l non-commerci<br>19                    | cial use                                   | v () - # I                                |   | <u>Cor</u>        | <u>relatio</u>           | on Ma                    | <u>trix</u>          |                      |                      |        |
|------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------|---|-------------------|--------------------------|--------------------------|----------------------|----------------------|----------------------|--------|
| A39<br>A<br>inal DOE 2<br>low leve<br>high leve<br>decimal | + (*<br>8<br>8<br>8                        | fr<br>C<br>2 0.<br>1 0.8                               | D<br>5 0.5<br>5 0.85<br>2 2<br>2                        | E<br>0.5<br>0.85<br>2                        | F<br>0.5<br>0.85<br>2                        | G H                                     | 0 0<br>0 0<br>0 0                          | K L C<br>0 0 0<br>0 0 0<br>0 0 0          | ( | Pai               | ir wise                  | corre                    | lation               | Analy                | /sis)                |        |
|                                                            | UAV Speed<br>(kph)                         | classification<br>Prob @ Max                           | Classification<br>Prob @ Max                            | Classification<br>Prob @ Max                 | Classification<br>Prob @ Max                 |                                         |                                            |                                           |   |                   |                          |                          | Sensor Cla           | ssification Pr       | obability @ N        | Max R  |
| factor nam                                                 | e<br>1 8<br>2 7                            | Classify Kang<br>1 0.6<br>6 0.5                        | 5 0.57<br>4 0.63                                        | 0.81<br>0.66                                 | 0.72<br>0.57                                 | 0                                       |                                            |                                           |   |                   |                          | UAV Speed<br>(32~81 kph) | UAV<br>(0.5 to 0.85) | MBT<br>(0.5 to 0.85) | IFV<br>(0.5 to 0.85) | (0.5 t |
|                                                            | 3 1<br>4 6<br>5 7<br>6 7<br>7 6<br>8 5     | 5 0.8<br>0 0.8<br>8 0.6<br>9 0.6<br>6 0.8<br>8 0.8     | 2 0.55<br>5 0.64<br>5 0.58<br>1 0.6<br>4 0.59<br>3 0.62 | 0.51<br>0.83<br>0.74<br>0.65<br>0.5<br>0.82  | 0.71<br>0.55<br>0.75<br>0.58<br>0.73<br>0.59 | 0                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    |                                           |   |                   | UAV Speed<br>(32~81 kph) | 1.0000                   | 0.0076               | 0.0096               | -0.0291              | -0.    |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                    | 9 6<br>0 6<br>1 6<br>2 7<br>3 6<br>4 7     | 4 0.5<br>9 0.7<br>7 0.7<br>0 0.7<br>1 0.5<br>3 0.6     | s 0.69<br>5 0.74<br>5 0.84<br>3 0.83<br>7 0.7<br>3 0.81 | 0.75<br>0.58<br>0.62<br>0.76<br>0.71<br>0.55 | 0.61<br>0.69<br>0.52<br>0.84<br>0.54<br>0.7  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                            |                                           |   | tion<br>Range     | UAV<br>(0.5 to 0.85)     | 0.0076                   | 1.0000               | 0.0001               | -0.0215              | -0.    |
| 1<br>1<br>1<br>1                                           | 5 6<br>6 7<br>7 5<br>8 3<br>9 3            | 3 0;<br>2 0,7<br>7 0,6<br>2 0,<br>7 0,8                | 8 0.82<br>1 0.85<br>8 0.68<br>7 0.78<br>1 0.72          | 0.63<br>0.78<br>0.68<br>0.54<br>0.69         | 0.5<br>0.82<br>0.68<br>0.63<br>0.78          | 0<br>0<br>0<br>0                        | 0 0<br>0 0<br>0 0<br>0 0<br>0 0            | 0 0 0<br>0 0 0<br>0 0 0<br>0 0 0<br>0 0 0 |   | assifica<br>@ Max | MBT<br>(0.5 to 0.85)     | 0.0096                   | 0.0001               | 1.0000               | -0.0044              | 0.0    |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                    | 0 3<br>1 5<br>2 3<br>3 3<br>4 4            | 8 0.5<br>3 0:<br>5 0.6<br>4 0.7<br>7 0.5               | 3 0.8<br>5 0.71<br>9 0.77<br>4 0.75<br>1 0.76           | 0.84<br>0.52<br>0.61<br>0.7<br>0.85          | 0.64<br>0.8<br>0.6<br>0.77<br>0.62           | 0 0 0 0 0 0                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    | 0 0 0<br>0 0 0<br>0 0 0<br>0 0 0          |   | ability (         | IFV<br>(0.5 to 0.85)     | -0.0291                  | -0.0215              | -0.0044              | 1.0000               | -0.    |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                    | 5 5<br>6 4<br>7 4<br>8 4<br>9 4            | 5 0.5<br>9 0.7<br>4 0.7<br>6 0.5<br>3 0.6              | 2 0.73<br>7 0.66<br>5 0.61<br>9 0.51<br>2 0.52          | 0.53<br>0.6<br>0.77<br>0.73<br>0.59          | 0.76<br>0.66<br>0.83<br>0.51                 | 0                                       |                                            |                                           |   | Ser<br>Proba      | ICV<br>(0.5 to 0.85)     | -0.0140                  | -0.0309              | 0.0001               | -0.0038              | 1.0    |
| 3<br>3<br>3<br>• M readr                                   | v 3<br>1 4<br>2 5<br>3 ₽ 4<br>ne / gbl / N | 2 0.7<br>0 0.7<br>0 0.5<br>1 0.6<br>OLH for up to 7 fa | 2 0.54<br>5 0.53<br>4 0.5<br>ctors NOLH for             | 0.8<br>0.72<br>0.57<br>up to 11 factor       | 0.65<br>0.85<br>0.53<br>s                    | 0<br>0<br>16 factors                    | 0 0<br>0 0<br>0 0<br>NOLH for 17-22 factor |                                           |   | •                 | Max <sub>I</sub>         | pairwis                  | e corre              | elation              | is < 0.              | 05.    |
|                                                            |                                            |                                                        |                                                         |                                              |                                              |                                         | <b>BD</b> 3 30                             | m ⊙ — 0 — ⊕ .                             | 1 | •                 | NOLH<br>ortho            | l kept t<br>gonal        | he fac               | tors ne              | arly                 |        |

#### **Scatter Plot Matrix**

| UAV Speed<br>(kph) |                                   |                                          |                                          |                                          |
|--------------------|-----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
|                    | UAV class Prob<br>@ Max Class Rng |                                          |                                          |                                          |
|                    |                                   | MBT Sensor class<br>Prob @ Max Class Rng |                                          |                                          |
|                    |                                   |                                          | IFV Sensor class<br>Prob @ Max Class Rng |                                          |
|                    |                                   |                                          |                                          | ICV Sensor class<br>Prob @ Max Class Rng |
| 30 40 50 60 70 80  | 0.450.55 0.65 0.75 0.85           | 0.450.55 0.65 0.75 0.85                  | 0.450.55 0.65 0.75 0.85                  | 0.450.55 0.65 0.75 0.85                  |

- Space filling property
  - No large empty spaces
  - NOLH sampled well

## **RESULTS AND ANALYSIS**

Both regression and partition tree models created can explain approximately 77% of the response variations. In order of importance, the significant factors identified were IFV sensor classification probability, MBT sensor classification probability, and UAV speed.

| ■ Response Mean(Blue Cas %) |                |          |
|-----------------------------|----------------|----------|
| ⊿ Actual by Predicted Plot  | Summary of Fit |          |
|                             | RSquare        | 0.769195 |
|                             |                |          |

| t Prune |         |           |    | Number    |         |   |  |  |  |
|---------|---------|-----------|----|-----------|---------|---|--|--|--|
|         | RSquare | RMSE      | N  | of Splits | AICc    |   |  |  |  |
|         | 0.777   | 0.0214673 | 33 | 4         | -144.64 |   |  |  |  |
|         |         |           |    |           |         | 1 |  |  |  |

#### **FUNCTIONAL ANALYSIS**

Functional decomposition was the analysis method used to identify the high-level critical functions that are required to be performed by the system to achieve the objectives.

#### **SCOPE OF STUDY**

The systems engineering process identified some alternatives to improve survivability, and this thesis focus on studying the effectives of sensing capability by analysing the effects of various platform's sensor classification probability at maximum sensor classification range.

| Function       Function       Function       Function         1.1       2.1       3.1       4.1         Navigate Route       Detect Objects       Avoid Adversaries'       Detection         Function       Function       Function       Function         Function       Function       Function       Function         Function       Function       Function       Function         1.2       Classify Objects       3.2       Defeat Incoming         Munitions       Function       Function       Function         Function       Function       Function       Function | 6<br>Monitor Area of<br>Operations | 5<br>Communicate<br>Information | 4<br>Attack<br>Adversaries | 3<br>Protect Crew                      | 2<br>Sense<br>Adversaries | 1<br>Move Assets       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------|----------------------------|----------------------------------------|---------------------------|------------------------|
| Function     Function       1.2     2.2       Drive Platforms     Classify Objects       Function     Function       Function     Function       Function     Function       1.3     (2.3)                                                                                                                                                                                                                                                                                                                                                                                     | 6.1<br>Display Map                 | 5.1<br>Transmit<br>Information  | 4.1<br>Employ Weaponry     | 3.1<br>Avoid Adversaries'<br>Detection | 2.1<br>Detect Objects     | 1.1<br>Navigate Route  |
| Function Function Function Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2<br>Update Map                  | 5.2<br>Receive<br>Information   | 4.2<br>Track Adversaries   | 3.2<br>Defeat Incoming<br>Munitions    | 2.2<br>Classify Objects   | 1.2<br>Drive Platforms |
| Transport Identify Prevent Armor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Function                           | Function                        | Function                   | 3.3<br>Prevent Armor                   | 2.3<br>Identify           | Function               |

Functional Decomposition for Maneuver Ground Forces



Potential Scope of Analysis on Survivability Improvement



**Results of Regression Analysis** 



**Results of Partition Tree Analysis** 

ion Probability @ Max Range

-0.0140

-0.0309

0.000

-0.0038

## **BENEFITS**

When actual information such as hit probabilities and effective ranges are used, the model can provide decision makers with quantitative figures as references for specification definition.

#### **FUTURE WORKS**

The thesis, which focuses on ground platforms' survivability in ground force maneuver operations, is made in conjunction with two other theses that explore offensive and defensive operations, respectively, in an urban environment. It is envisage that when all three these are studied together, more insights could be uncovered.

