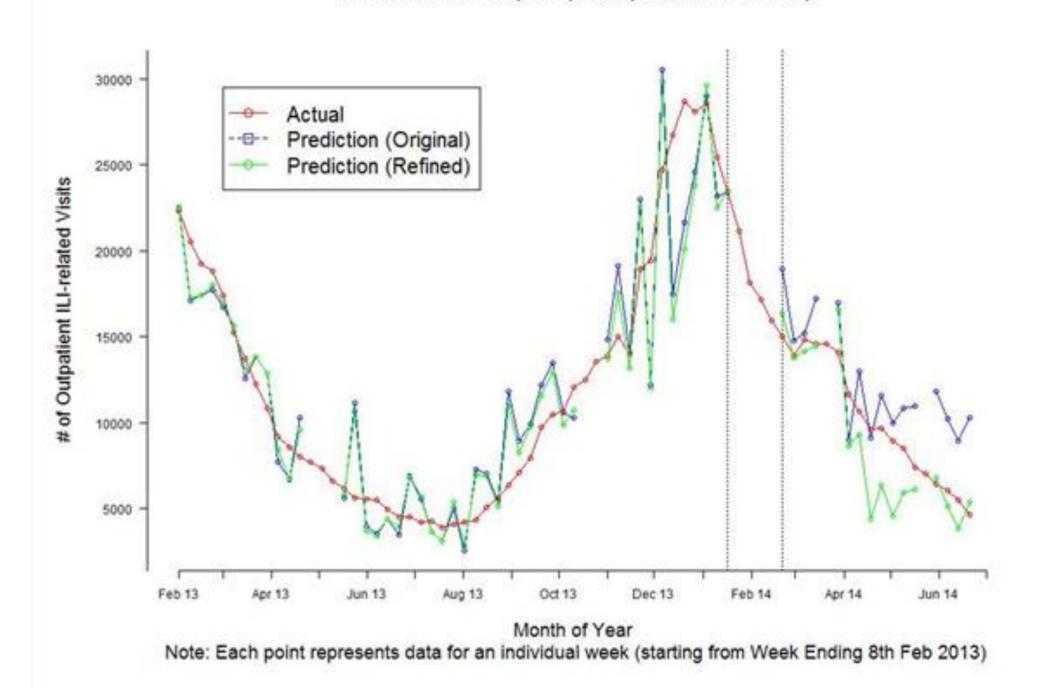
Temasek Defence Systems Institute


Temasek Defence Systems Institute

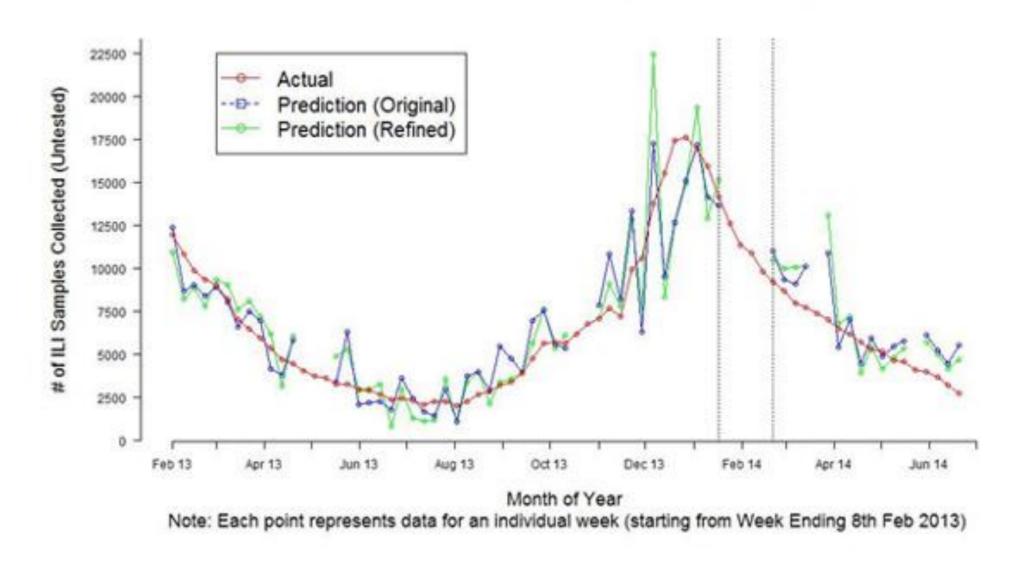
The Use of Twitter to Predict the Level of Influenza Activity in the United States

Ng Kok Wah Assoc. Prof. Samuel E. Buttrey

Objectives

- Provide first responders of an influenza outbreak with situation awareness.
- Develop prediction models that uses Twitter messages to predict influenza-related statistics that indicates the level of influenza activity.

Predicted vs. Actual Response (# of Outpatient ILI-related Visits)


<u>Approach</u>

- Explores the method of aggregating frequencies of categories of hand chosen terms as predictor variables.
- Use CDC's ILI and Virologic surveillance network data that tracks the number of Influenza-like Illnesses Outpatient visits and number of respiratory specimens collected and tested positive for influenza type A and B as response variables.
- Generate predictions by using the regression models constructed for each response variables
- Determine the Pearson's correlation coefficient that describes the correlation between the generated predictions and actual CDC surveillance data.

Results

- Results are promising for the models constructed for the national level (entire U.S.); the models are well fit (adjusted R2>0.6) and their predictions are highly correlated with CDC's surveillance ILI and Virologic data.
- Pearson's Correlation Coefficient between the test set predictions and actual CDC ILI surveillance data: 0.900 (95% CI: 0.732, 0.965)
- Pearson's Correlation Coefficient between the test set predictions and actual CDC Virologic surveillance data (Number of respiratory specimens collected): 0.833 (95% CI: 0.574, 0.940).
- The observed high Pearson's correlation coefficient suggests the presence of correlation between Twitter messages and CDC surveillance data.

Predicted vs. Actual Response (# of ILI Samples Collected (Untested)

Future Works

• Low adjusted R2 (<0.6) are observed for the majority of the regional and state level models.

Benefits

- First responders are able to respond promptly and accurately to influenza outbreaks.
- Additional lead time to enhance logistics operations and preparations
- Evaluate the proposed approach in the future using new data ullet
- Apply the proposed approach to predict the level of influenza \bullet activity in other countries
- Refine keyword selection method
- Use of a Twitter Geo-location prediction tool to determine \bullet location of tweet sender

5 Indicative Predictor Variables						5 Supportive Predictor Variables				
Group	Flu Activities	Flu Terms	Flu Symptoms	Medicines	Flu Complications	Rest Activities	Verbs	Adjectives	Pronouns	Emoticons
Examples	Doctor	Flu	Chesty	Medicine	Pneumonia	Medical Certificate	Diagnose	Bedridden		:'-(
	Clinic	Influenza	Fever	Tylenol	Bronchitis	Need Some Rest	Got	Unwell	You	:'(
	Hospital	H1N1	Sore Throat	Vicks	Sinus Infection	Day Off	Down	Weak	Не	>:[

