
Temasek Defence Systems Institute

Temasek Defence Systems Institute

Survivability Design of Ground Systems for Area Defense Operation in an Urban Scenario

Goh Wei Jun Associate Professor Douglas Nelson Associate Professor Eugene Paulo

Objective of Thesis

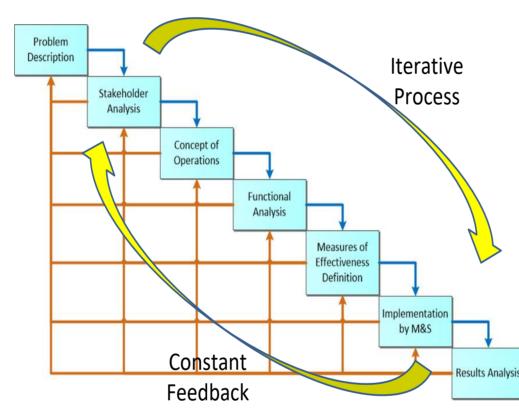
The shift in conventional warfare to urban operations changes the determinants of an operationally-effective ground system design. This thesis applies a systems engineering approach with the

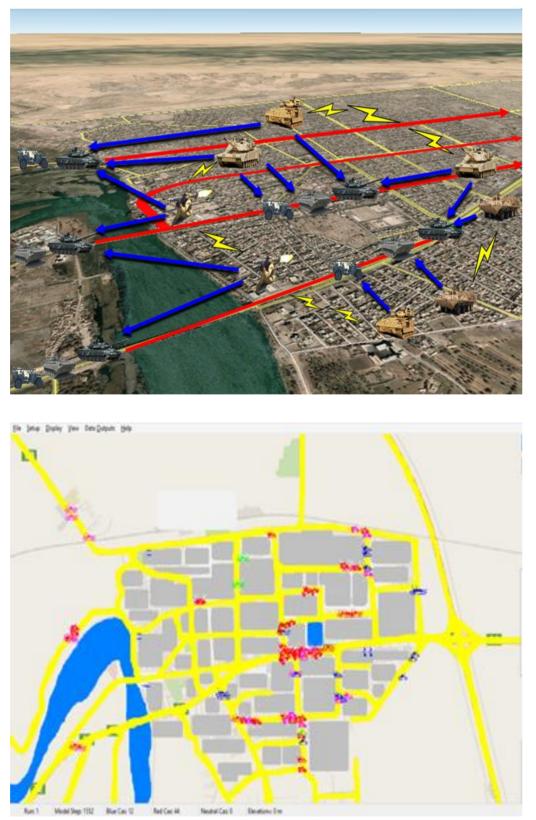
Research Results

Analysis Success Parameter Rate	Blue Force Attrition	Loss Exchange Ratio (LER)
------------------------------------	-------------------------	---------------------------------

following aim:

- Determine significant ground system design factors that impact the mission objectives of an urban area defense operation
- Investigate the relative contribution of passive and active protection, mobility, and sensor classification range on ground system's survivability


Research Methodology


The systems engineering waterfall model is modified for application to this thesis.

- Measures of Effectiveness (MOEs)
 - Success Rate
 - Blue Force Attrition
 - Loss Exchanger Ratio (LER)

Model Development

- Use of Map Aware Nonuniform Automata (MANA) for area defence urban operation model
- Factors for Consideration
 - Passive Armor
 - Speed
 - Sensor Classification Range

Significant design factor	Main Battle Tank armor APS equipping			
Critical armor value	1,000mm	1,075mm	1,075mm	
Mean	74.70%	16.32	3.97	
Effects of APS equipping	Greatly complements low armor configuration	Reduces Blue Force attrition between 20% to 60%	Greatly increases LER with high armor configuration	
	Viable substitute for passive armor			

Benefits and Potential Applications of Research

While the thesis uses hypothetical values for the variables used in the model, this research is useful in the following areas:

- Investigation of relative effects between passive armour, active protection system, mobility, and sensor classification range on the objectives of an area defence operation
- Use of actual design values of engineering parameters provide insights to the formulation of survivability requirements for ground systems design

- Active Protection System
 (APS) equipping
- Design of Experiment and Simulation
 - Use of Nearly Orthogonal Latin Hypercube (NOLH) to sample design space
 - 65 design points with 50 replications each, totaling 3,250 simulation runs

Recommendation for Future Work

The following areas is recommended for future work to expand on current thesis work:

- Expansion of scope to other defence missions (e.g. Mobile defence and Retrograde operations)
- Investigate Lethality and Concealment improvement technologies as a factor of consideration
- Investigate the effects of tactics and task force allocation variation on an area defense operation

