Temasek Defence Systems Institute

Temasek Defence Systems Institute

Predicting The Accuracy of Unguided Artillery Projectiles Lim Wee Yeow

Prof. Morris R. Driels

Objective: A method for predicting the accuracy of unguided artillery projectiles is presented in this thesis. The goal was to develop a standalone program that would estimate accuracy without the need for a large database of weapon trajectory data. The presented method uses a simplified version of the modified point mass trajectory model (MPMTM) and error computation models to predict error metrics that are particularly useful in predicting damage effects on various types of targets using the Joint Weaponeering System (JWS). The developed program is coded in Visual Basic, and the error metrics can typically be computed in less than 30 seconds for most ranges, in the computation precision specified in this thesis. The developed program is named the Indirect Fires Delivery Accuracy Program (IFDAP).

Simplified MPMTM:

Velocity Angles

Trajectory Results Comparison with

Fig 1. IFDAP Trajectory Model

Error Computations:

FT 155-AM-02:

The program was verified by comparing it against the FT 155-AM-02 firing table for the M107(HE) 155mm artillery projectile. The verification results demonstrate that the developed trajectory model closely matches the basic trajectory data to within 2% and ballistic partials to within 7% for most ranges of interest.

Accuracy Results Comparison with FT 155-AM-02:

Accuracy metrics derived from the ballistic partials generated from the developed program are within 10% of those derived from the firing table's ballistic partials for typical firing ranges.

Main Program GUI:

Nomina	Nominal Trajectory Inputs			jectory Outp	outs	User Notes	Error Computation Inputs		Error Computation Outputs			
Firing Inputs			QE	463.48 mils		General Usage	For Precision Error					
Initial Velocity 684 m/s		Range	15000.09	m	(22) ·	Error Budgets		Ballistic Partials		O range	Ødeflection	
(QE 463.	48 mils	Initial Velocity	684.00	m/s	1. Using the QE finder, input desired range	σ,	0.92	dX/dV	23.74	21.84	
Launch Altitud	ie	0 m	Impact Velocity	314.84	m/s	and MV to find QE required to reach the	σ _{drag}	0.65	dX/drho	-63.64	-41.37	
Height of targ	et	0 m	Impact Angle	715.51	mils	range. Clicking "Find QE and Compute	σ ₀	0.3	dX/dQE	14.38	4.31	
Method of Fi	re Predicted	•	Drift(m)	234.11	m	Nominal Traj" activates procedure to	ao	0.52	1			
General Parameters			Drift(mils)	15.61	mils	search QE and automatically writes the	aı	2000	1			
Time Sto	ep 0.	01 s	Max Ordinate	2540.68	m	found QE and desired MV into trajectory				στοτ	46.98	14.78
g 9.81 m/s ²		Range at Max Ord	8474.57 m 43.83 s		model firing inputs and compute nominal trajectory outputs.	For MPI Error						
Air Cp 1005 J/Kg.K		Time of Flight				Error Budgets		Ballistic Partials		G range	deflection	
Air	Cv 7	18 J/Kg.K		6			Met Staleness	0.5 hour, 10KM -				1
						2. Clicking "Compute Nominal Trajectory"	σιm	1	dZ/d(lift)	2.30		2.30
Wind Speed				6		will activate the procedure to run the	σ,	3	dX/dV	23.74	71.23	
Range (+ for tail) 0 m/s					under "Nominal Trajectory Inputs"	Odrag	1	dX/drho	-63.64	-63.64		
Cross (+from let	t)	0 m/s		1		under Norman trajectory inputs	σ	0.5	dX/dQE	14.38	7.19	
				1		3. Clicking "Compute Accuracy" will	Garimuth	1	dZ/da	14.73		14.73
Command Buttons			Computa	ation Indicator		activate the procedure to run the		2.02	dX/dW	19.17	54.26	
			2-1			to obtain results of all perturbed conditions	Owind	2.03	dZ/dW	11.27		31.88
First OF A			te Computing	Computation Completed		required to compute ballistic partials	σ.	0.27	dX/drho	-63.64	-17.18	
Find QE &	Compute	Compute					σ.	0.3	dX/dT	10.48	3.15	
Norminal Traj	Trajectory	Accuracy					σ _{en ex}	0	dX/dChart-X	1	0	
	majectory	148 (J.)				OF Finder	O chart-X	0	dX/dChart-7	1		0
						<u>ac maci</u>	Chart-Z	15	dX/dChart-2	1	15	0
						The QE finder will use the QE unit effect to	O Loc-X	15	dX/dLoc-7	1		15
OE Einder Innute OE Finder O			lar Outnute		estimate the next iteration QE. The	COC-2	1	UN ULUC-2	-	112 47	29.26	
Desired Range 15000 m		OF	463.48	mile	procedure will run for the specified			1	TOT	112.4/	30.20	
Desired Initial Veloci	ty 6	84 m/s	Caluclated Range	15000.09		range accuracy specified. If accuracy is	Partials Perturbations (increase)		Delivery Acc		curacy	
Number of iteratio	ber of iterations 20					met, procedure will stop, otherwise it will	Tail Wind (knots) 50				121.00	
Range Accura	cy	1 m				stop at the number of iterations specified.	Cross Wind (knots)	50	σχ		121	
							Air Temp (%)	10				
							Air Density (%)	10	σΖ		41.01	
							QE (mils)	QE (mils) 50			05.00	
				() ()			Initial Velocity (m/s)	10	CEP ₅₀		95.90	

Discussion & Conclusion:

- 1. Accuracy computation can typically be achieved in under 30 seconds for most ranges and charges.
- 2. The smaller the magnitude of time step, the better the convergence of the trajectory and ballistic partials outputs.
- 3. The angle of attack is sufficiently small to be neglected.
- 4. The errors are the highest at the minimum and maximum range of a given charge.

