Temasek Defence Systems Institute

Temasek Defence Systems Institute

Task Allocation With Ordering Constraints

Cheng Ze Wei

Supervisors: Prof Antonios Tsourdos & Dr Seo Minguk

Introduction

Objective of the project is to develop a task allocation algorithm that assigns tasks while:

- Maximises rewards
- Respect ordering and operational constraints, and
- Complete in a reasonable amount of time

Greedy Algorithm

Greedy algorithm was chosen as a comparison algorithm. Although it might only provide local solution optima, it is easy to implement and is <u>fast</u>.

Genetic Algorithm

Despite the <u>higher computational time</u> required, genetic algorithm was chosen due to its suitability to <u>accommodate constraints</u> and likelihood of attaining <u>global optimal solutions</u> to complicated problems.

Genetic algorithm was designed to have:

- Random and non-random initial population
 - Some tasks are chosen using a heuristic function
- Dynamic population size based on variance
- Dynamic crossover probability based on variance, skewness, and iteration

Greedy algorithm was designed using the same heuristic function in genetic algorithm, except that:

- It is sequential
- Boost selection functions when agents have limited feasible tasks

Results

- Taguchi method improved initialisation by 24.3%
- Non-random initialisation method performed better (+50%) at a cost of more time (+50%)
- Crossover was most effective at the beginning
- Mutation was most effective on weak chromosomes
- Genetic algorithm took significantly longer time
- Initially:
 - Genetic algorithm produced better solution
 - Greedy algorithm's solution deteriorated with complicated test cases

Before	Greedy		Genetic	
Test	Reward	Time (s)	Avg. Sol.	Time (s)
Α	218	0.796	218	823
В	119	1.61	212 (+78.2%)	1,790
С	106	6.57	224 (+111%)	12,800

- After improvement to heuristic function (used in both):
 - Computational time for both algorithm remained similar
 - Solutions for both improved
 - Greedy algorithm produced better solutions
 - Due to more constraint tasks being covered

- Handle constraints using:
 - Eliminating infeasible solutions
 - Penalising selection function
 - Repairing infeasible solutions
- Time-based single point crossover with agent cross pairing

Conclusion

- Genetic algorithm was able to explore better solutions with time
- However, the impact of constraints on computational time dominated, preventing genetic algorithm from arriving at global optimum solution in a reasonable amount of time
- Improved heuristic allow greedy algorithm to produce good local
- Updated heuristic was able to describe the complex problem sufficiently

After	Greedy		Genetic	
Test	Reward	Time (s)	Avg. Sol.	Time (s)
Α	218	0.76	218	836
В	281	1.79	246 (-12.5%)	2,220
С	378	8.65	307 (-18.7%)	9,442
				·

optimum solutions

Future Works

- Enhancing aggressiveness of mutation operator
- Tuning on probability of non-random initialisation in genetic operators
- Investigate effect of proportion of non-random initialisation and initial population sizing criteria
- Look into and investigate effectiveness of distributed auction method

