
Task Allocation With Ordering Constraints
Cheng Ze Wei

Supervisors: Prof Antonios Tsourdos & Dr Seo Minguk

Objective of the project is to develop a task allocation algorithm that 
assigns tasks while:
• Maximises rewards
• Respect ordering and operational constraints, and
• Complete in a reasonable amount of time

Introduction
Despite the higher computational time required, genetic algorithm was 
chosen due to its suitability to accommodate constraints and likelihood 
of attaining global optimal solutions to complicated problems.

Genetic algorithm was designed to have:
• Random and non-random initial population

• Some tasks are chosen using a heuristic function
• Dynamic population size based on variance
• Dynamic crossover probability based on variance, skewness, and 

iteration
• Handle constraints using:

• Eliminating infeasible solutions
• Penalising selection function
• Repairing infeasible solutions

• Time-based single point crossover with agent cross pairing

Greedy algorithm was chosen as a comparison algorithm. Although it 
might only provide local solution optima, it is easy to implement and is 
fast.

Greedy algorithm was designed using the same heuristic function in 
genetic algorithm, except that:
• It is sequential
• Boost selection functions when agents have limited feasible tasks

• Enhancing aggressiveness of mutation operator
• Tuning on probability of non-random initialisation in genetic 

operators
• Investigate effect of proportion of non-random initialisation and 

initial population sizing criteria
• Look into and investigate effectiveness of distributed auction 

method

• Taguchi method improved initialisation by 24.3%
• Non-random initialisation method performed better (+50%) at a 

cost of more time (+50%)
• Crossover was most effective at the beginning
• Mutation was most effective on weak chromosomes
• Genetic algorithm took significantly longer time
• Initially:

• Genetic algorithm produced better solution
• Greedy algorithm’s solution deteriorated with 

complicated test cases

After Greedy Genetic

Test Reward Time (s) Avg. Sol. Time (s)

A 218 0.76 218 836

B 281 1.79 246 (-12.5%) 2,220

C 378 8.65 307 (-18.7%) 9,442

Genetic Algorithm

Greedy Algorithm

Results

Before Greedy Genetic

Test Reward Time (s) Avg. Sol. Time (s)

A 218 0.796 218 823

B 119 1.61 212 (+78.2%) 1,790

C 106 6.57 224 (+111%) 12,800

Future Works

• Genetic algorithm was able to explore better solutions with time
• However, the impact of constraints on computational time 

dominated, preventing genetic algorithm from arriving at global 
optimum solution in a reasonable amount of time

• Improved heuristic allow greedy algorithm to produce good local 
optimum solutions 

Conclusion

Genetic algorithm exploring better solutions

Mutation performance Crossover performance

• After improvement to heuristic function (used in both):
• Computational time for both algorithm remained similar
• Solutions for both improved
• Greedy algorithm produced better solutions
• Due to more constraint tasks being covered
• Updated heuristic was able to describe the complex 

problem sufficiently


	Task Allocation With Ordering Constraints

