Temasek Defence Systems Institute

Temasek Defence Systems Institute

A BROWNIAN BRIDGE MOVEMENT MODEL TO TRACK **MOBILE TARGETS**

Cheng Chun Chieh Advisors: Dr. Dashi I. Singham, Dr. Michael P. Atkinson

Objective:

- To use a mathematical model to predict the movement of a target
- Goal is to allow unmanned sensors to move autonomously while maximizing Probability of Detection (Pd)

Brownian Bridge Movement Model

- Brownian bridge is a stochastic process where Brownian motion is tied to particular values at two points
- Captures at an aggregate level characteristics representative of

- weather and some level of tactical behaviors
- Used extensively in animal movement studies
- Modeled using simulations in MATLAB

Probability Heat Map

- Calculated based on simulations of Brownian Bridges
- Based on time and x,y coordinates
- Can be extended to include multiple starting and ending points, updates with real intelligence
- Used as a means for sensor deployment

Example of a Brownian Bridge

Example of Probability Heat Maps across time

Meta-Experiment

Results

- Sensor's Detection Probability
- **Detection Region Size**
- Trade-off analysis between number of sensors vs detection region

2 -	20 discrete sensors,	0.5962	0.5843	0.6080	0.0598	0.0
	sensor width of 0.5					
	Configuration 3:					
	30 discrete sensors,	0.2031	0.1953	0.2109	0.0392	0.0
•	sensor width of 0.2					
	Configuration 4:					
	125 discrete sensors,	0.1987	0.1890	0.2084	0.0489	0.0
	sensor width of 0.2					

Conclusion:

- Developed the Brownian Bridge Movement Model with extensions and modifications for a military scenario
- It is more effective to have *sensors cover a wider area at fewer discrete points in time* than to have a greater number of discrete looks using sensors covering smaller areas
- Further work to extend the BBMM for continuous looks and smarter deployment algorithm

