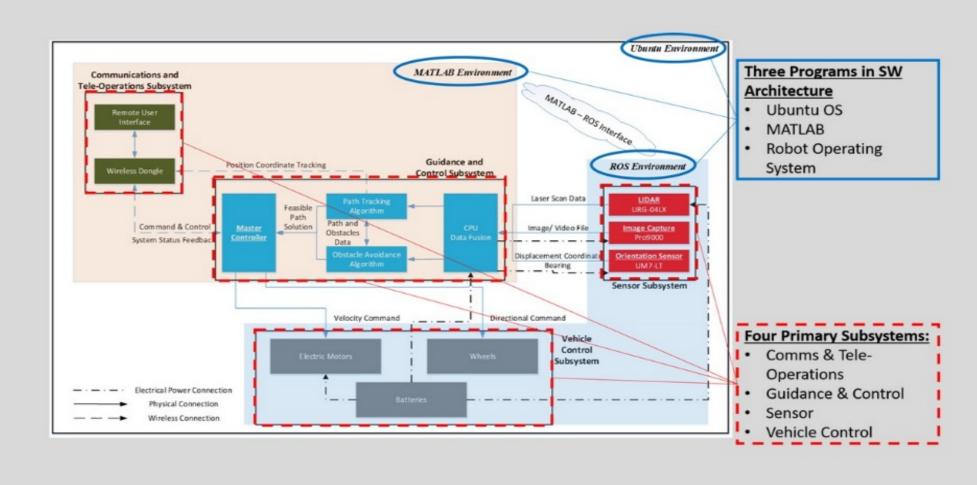

Temasek Defence Systems Institute

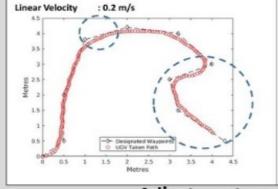
Systems Engineering Approach to Develop Guidance, Navigation & Control Algorithms For Unmanned Ground Vehicle

Lim Eng Soon Singapore Army

Study Objective


...to develop a rapid prototype of an autonomous ground platform capable of <u>navigating</u> through designated waypoints while detecting and <u>avoiding</u> obstacles during maneuver...

...capable of identifying potential targets at its designated terminal waypoint...

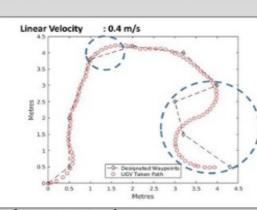

...environment for the vehicle will be in a <u>cluttered terrain</u> with <u>varying light conditions</u>...

Candidate Technologies & Implemented Architecture

Acoustic Sensor	Simple implementation	 Poor angular resolution Require multiple sensors
IDAR	Good angular resolution Fast sensor response and feedback	Susceptible to environmental conditions
ight Sensor	Simple implementation Passive sensor, no signature	 No angular/ range resolution Require multiple sensors
mage Camera	High resolution of vicinity Passive sensor, no signature	Computationally intensive
Radiofrequency	Good angular resolution Fast sensor response and feedback	 Costly Susceptible to noise and jamming
Obstacle Avoidar		nance
Obstacle Avoidar	Perform Efficiency	nance Time to Arrive
	Perform	
Algorithm	Perform Efficiency • Low; Reactive	Time to Arrive High;
Algorithm Bug Algorithm	Efficiency Low; Reactive Only reactive to obstacles upon contact Low; Reactive	Time to Arrive High; Movement in one direction to avoid obstacle: Low;
Algorithm Bug Algorithm Potential Field Method	Efficiency Low; Reactive Only reactive to obstacles upon contact Low; Reactive Require pre-msn planning and knowledge of AO Medium; Proactive	High; Movement in one direction to avoid obstacles Low; Global route, localized obstacle avoidance Medium;
Algorithm Bug Algorithm Potential Field Method Vector Field Histogram	Efficiency Low; Reactive Only reactive to obstacles upon contact Low; Reactive Require pre-msn planning and knowledge of AO Medium; Proactive Dependent on sensors' accuracy & sensitivity High; Proactive	Time to Arrive High; Movement in one direction to avoid obstacles Low; Global route, localized obstacle avoidance Medium; Localized obstacle avoidance Medium; Medium;
Algorithm Bug Algorithm Potential Field Method Vector Field Histogram Vision-based method Hybrid Navigation	Efficiency Low; Reactive Only reactive to obstacles upon contact Low; Reactive Require pre-msn planning and knowledge of AO Medium; Proactive Dependent on sensors' accuracy & sensitivity High; Proactive Dependent on sensors' accuracy & sensitivity High, Proactive High, Proactive	Time to Arrive High; Movement in one direction to avoid obstacles Low; Global route, localized obstacle avoidance Medium; Localized obstacle avoidance Medium; Computational and time intensive Low
Algorithm Bug Algorithm Potential Field Method Vector Field Histogram Vision-based method Hybrid Navigation Algorithm	Efficiency Low; Reactive Only reactive to obstacles upon contact Low; Reactive Require pre-msn planning and knowledge of AO Medium; Proactive Dependent on sensors' accuracy & sensitivity High; Proactive Dependent on sensors' accuracy & sensitivity High, Proactive High, Proactive	Time to Arrive High; Movement in one direction to avoid obstacles Low; Global route, localized obstacle avoidance Medium; Localized obstacle avoidance Medium; Computational and time intensive Low

Findings - Pure Pursuit Path Following

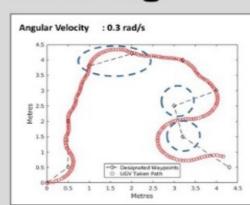
Simple implementation

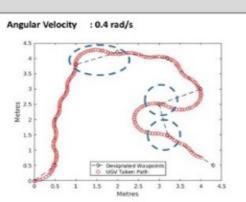

Simple implementation

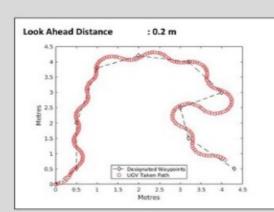
System able to achieve intended orientation

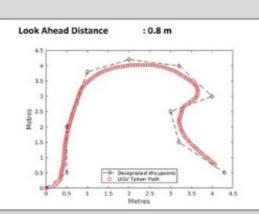
Follow-the-Carrot

Pure Pursuit

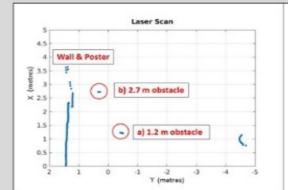

Vector Pursuit

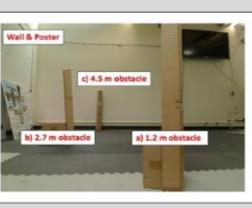


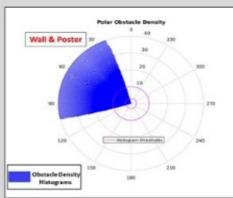

Poor performance around bends


. Tend to oscillate, but much better than FTC

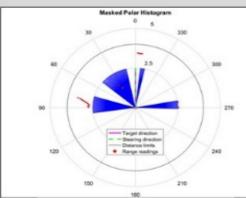
· High complexity and computationally


Adjustments on Linear Velocity

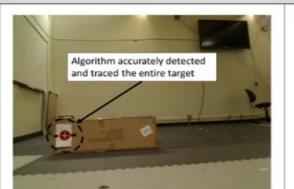

Adjustments on Angular Velocity

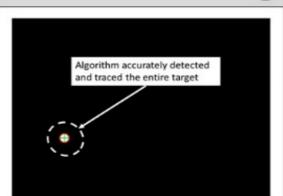

Adjustments on Look-Ahead Distance

- Stability of system's maneuver is closely linked to the following three tuning parameters:
 linear velocity affects overall movement speed,
 - angular velocity affects dexterity to negotiate bends,
 - look-ahead distance affects overall movement stability.

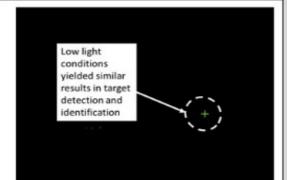

Findings - Vector Field Histogram Obstacle Avoidance

- 1. Detection of Obstacles
- 2. Derivation of Obstacle Density


3. Selection of Steering Direction


Obstacle avoidance goes through three levels of data reduction for deriving optimal path and are as follow:

- detection of obstacles by on-board LIDAR,
- feedback from sensors gives perception of obstacle presence,
 selection of steering direction from candidates according to intended direction.
- Efficiency of vector field histogram method is affected by the following:


 the detection range and resolution of sensor to give more reaction time,
 - the tuning of thresholds to ensure that available routes are indeed obstacle free.

Findings – Vector Field Histogram Obstacle Avoidance

Efficiency of feature recognition is affected by the following:

- color deviation tolerance,
- expected shape factor to be identified in the binary image.

